
Contents

1 Foreword 1

2 Introduction 1
2.1 Context . 1

2.1.1 Electrostatic potential 2
2.1.2 Gravitational interactions 2

2.2 The Fast Mutipole Method 3
2.3 The P2P kernel . 3
2.4 Kokkos in a nutshell . 6

1 Foreword

This document summarizes the work completed during Aurélien Gauthier’s
internship with the CONCACE team, under the supervision of Antoine Gic-
quel, PhD student in CONCACE. The objective was to explore the Kokkos
ecosystem by attempting to implement existing kernels from the ScalFMM
library. This document serves as a reflection on that experience and includes
code snippets from the developed implementations to highlight some of the
features offered by Kokkos. However, note that it is not intended to be a for-
mal guide or comprehensive summary of the official documentation (which
can be found here), though pointers to relevant sections are provided. We
only explored specific features of Kokkos that suited our needs for a specific
target application (detailed in the introduction), and thus, this document
does not aim to be an exhaustive overview of the library. Nonetheless, we
hope that our experience might be valuable to others interested in learning
more about Kokkos. At the time of writing, the latest release of Kokkos
is version 4.3.01, please note that some features presented here may change
as the API evolves. Additionally, certain results are preliminary and may
require further investigation (see the result section). Finally, feedback is
warmly welcome!

2 Introduction

Before diving into the heart of the matter, let’s briefly introduce the context
of the internship.

1

https://github.com/kokkos/kokkos
https://gitlab.inria.fr/solverstack/ScalFMM
https://github.com/kokkos/kokkos
https://kokkos.org/kokkos-core-wiki/programmingguide.html
https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos

2.1 Context

We are interested in physical applications where we evaluate pairwise inter-
actions between N bodies (by "bodies" we mean particles, planets, celestial
objects, etc.). Each of the N bodies is located at a position xi ∈ Rn (n = 2
or n = 3 most of the time). Generally, this can be expressed as follows:

Φi =

N∑
j=1,i ̸=j

k(xi, xj)mj ∀i ∈ {1, . . . , N}. (1)

In equation (1):

• xi is the position of body i.

• mi represents the input for body i (for example, it could be an electric
charge or mass).

• Φi represents the output for body i (for example, it could be a poten-
tial or a force).

• k(x, y) if the interaction function (or interaction kernel). This func-
tion often has a singularity when x and y are close to each other, but
it becomes smooth and decays rapidly as the distance from the singu-
larity increases.

We will now provide some examples of this physical problem.

2.1.1 Electrostatic potential

In this case, we consider a set of N particles, each with a charge qi, and we
want to compute the potential pi for each one of them using the following
expression:

pi =
1

4πϵ0

N∑
j=1,i ̸=j

qj
∥xi − xj∥

∀i ∈ {1, . . . , N}, (2)

where ϵ0 is the vaccum permeability. Thus, the interaction function
is defined as:

k(x, y) =
1

∥x− y∥
.

2

https://en.wikipedia.org/wiki/Vacuum_permittivity

2.1.2 Gravitational interactions

In this case, we have a set of N celestial bodies (planets, stars, etc. . .) each
with a mass mi, and we aim to calculate the total force F⃗i acting on each
one of them using the following formula:

F⃗i = Gmi

N∑
j=1,i ̸=j

(xj − xi)

∥xi − xj∥3
mj ∀i ∈ {1, . . . , N}, (3)

where G is the gravitational constant. Thus, the interaction function
is defined as:

k(x, y) =
x− y

∥x− y∥3
.

2.2 The Fast Mutipole Method

One can notice that the naive direct evaluation of (1) has quadratic complex-
ity (i.e., (N2)). The Fast Multipole Method (FMM) [greengard1987fast]
is a hierarchical method used to accelerate the evaluation of (1). It specif-
ically speeds up the computation of long-range interactions (i.e., the
distant interactions) between a large number of bodies. Instead of calcu-
lating all pairwise interactions by evaluating (1), which would be obviously
prohibitively time-consuming, the FMM groups distant bodies and approx-
imates their interactions. This significantly reduces the computation time.
For a more comprehensive, in-depth explanation of the FMM, we direct the
reader to the first chapter of [blanchard2017fast]. However, a thorough
understanding of the FMM is not required to follow this document; this
reference is provided simply to give the overall context.

In the FMM algorithm, the space in which the N bodies are located is
hierarchically divided into clusters (or boxes) that are nested within one
another. This hierarchical division is usually represented by a tree, where
each node represents a box (this is a d -tree; in 3D it is called an octree, and
in 2D, a quadtree,. . .). We usually consider that interactions between bodies
located in the same box or in neighboring boxes are part of the near field,
while other interactions are part of the far field.

In practice, the FMM separates the computation of the near field from
the far field. As briefly mentioned above, the FMM groups distant bod-
ies and uses approximations to compute the far field. However, for the
near field calculation, approximations are not accurate enough. As a con-
sequence, the interactions between each pair of bodies must be computed

3

https://en.wikipedia.org/wiki/Gravitational_constant

explicitly and precisely (like in expression (1)). This is the purpose of the
P2P operator, which we will describe in the next paragraph. In the end,
the FMM algorithm performs a fast evaluation of (1) (by "fast evaluation"
we mean (N logN) and even (N) with a multi-level strategy).

2.3 The P2P kernel

As we mentioned earlier, the P2P (Particle-to-Particle) kernel is the part
of the FMM algorithm responsible for the direct calculation of interactions
between nearby bodies.

There are actually two variants of the P2P kernel, but the underlying
concept is the same for both: iterating through bodies to update the output
of others. In this context, we refer to the bodies whose outputs are being
updated as target bodies, and those contributing to the interactions as source
bodies. Note that, in most cases, the target and source bodies are actually
the same.

• First version: The P2P inner kernel (see Algorithm fig. 1) calculates
the interactions between bodies located within the same box B. We
can notice that we skip the case where i = j (i.e., self-interaction).
This situation corresponds to the one illustrated in Figure fig. 2.

Figure 1: P2P inner algorithm

• Second version: The P2P outer kernel (see Algorithm fig. 3) calcu-
lates the interactions between bodies located in two neighboring boxes.

4

Figure 2: Bodies in a single box (typical situation for the P2P inner kernel)

We consider a first box B1 with M bodies and a second box B2 with
N other bodies. Each of the bodies in B1 contributes to update the
output of the bodies in B2. This situation corresponds to the one
illustrated in Figure fig. 4.

Figure 3: P2P outer algorithm

From now on, without loss of generality, we will focus only on the P2P
inner kernel in the case of the electrostatic potential (see (2)) in a simple
two-dimensional application (i.e, n = 2). In other words, we aim to compute:

5

Figure 4: Bodies in neighboring boxes (typical situation for the P2P outer
kernel)

pi =
N∑
j=1

qj
∥xi − xj∥

∀i ∈ {1, . . . , N} with xi ∈ R2, (4)

with pi the potential of particle i and qj the charge of particle j. This
was the target kernel that we attempted to implement using Kokkos.

2.4 Kokkos in a nutshell

Before moving forward, let’s provide a brief introduction to Kokkos [9485033,
carteredwards20143202]. It is most of the time presented as a C++ li-
brary designed for performance portability in HPC applications. It al-
lows developers to write parallel code that runs efficiently across various
hardware architectures, including CPUs and GPUs, without the need to
rewrite code for each platform. By providing abstractions for parallel exe-
cution and memory management, Kokkos allows users to leverage different
backends (e.g., OpenMP, CUDA) through a single, unified API. However, it
is important to note that these backends must be selected at compile-time.
During the internship, we tested the following backends: OpenMP (CPU),
C++ threads (CPU), and CUDA (GPU). However, other backends are
currently supported (such as HIP) and more are planned for the future.
Last but not least, Kokkos relies on key abstractions, such as the memory
space, which determines where the data is located, and the execution space,

6

https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos
https://kokkos.org/kokkos-core-wiki/ProgrammingGuide/ProgrammingModel.html#memory-spaces
https://kokkos.org/kokkos-core-wiki/ProgrammingGuide/ProgrammingModel.html#memory-spaces
https://kokkos.org/kokkos-core-wiki/ProgrammingGuide/ProgrammingModel.html#execution-spaces

which specifies where the code is executed.
The most convenient way to install Kokkos is via CMake (but you can

find other alternatives in the documentation). However, Guix also offers
an easy way to switch between different backends, making it simple to
configure Kokkos for various architectures. For example, the following lines
can be used to create development environments via guix shell using the
--pure option:

• Using OpenMP as a backend:

guix shell --pure kokkos-openmp gcc-toolchain@11 <other
packages> ...↪→

• Using C++ threads as a backend:

guix shell --pure kokkos-threads gcc-toolchain@11 <other
packages> ...↪→

• Using CUDA as a backend:

guix shell --pure kokkos-cuda-a100 gcc-toolchain@11
cuda-toolkit@12.4 <other packages> ...↪→

export LD_PRELOAD=/usr/lib64/libcuda.so:/usr/lib64/libnvidia-p ⌋

txjitcompiler.so # required to use CUDA with
guix

↪→

↪→

We provide suitable Guix environments to run the implementations
with these backends in the results section.

As mentioned earlier, Kokkos is written in modern C++ and makes ex-
tensive use of advanced C++ programming techniques. However, it offers
a straightforward API, so users do not need to engage with complex C++
code to work with Kokkos. That said, it is still beneficial to be familiar with
C++ templates. Roughly speaking, Templates allow for writing generic
and reusable code that can handle different data types. They allow users to
write functions and classes to be defined independently of specific types,
so the same code can operate on various data types without duplication.

• A (non-exhaustive) starting point for getting a good grasp of C++
templates: Wikipedia - C++ Templates

• Entry point for templates in the reference documentation: cpprefer-
ence.com - Templates

7

https://github.com/kokkos/kokkos
https://kokkos.org/kokkos-core-wiki/quick_start.html#basic-configure-build-install-recipes
https://kokkos.org/kokkos-core-wiki/index.html
https://guix.gnu.org/
https://guix.gnu.org/manual/devel/en/html_node/Invoking-guix-shell.html
https://www.openmp.org/
https://en.cppreference.com/w/cpp/thread/thread
https://developer.nvidia.com/cuda-toolkit
https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos
https://en.wikipedia.org/wiki/Template_(C%2B%2B)
https://en.cppreference.com/w/cpp/language/templates
https://en.cppreference.com/w/cpp/language/templates

	Foreword
	Introduction
	Context
	Electrostatic potential
	Gravitational interactions

	The Fast Mutipole Method
	The P2P kernel
	Kokkos in a nutshell

